Off-the-grid compressive sensing for broken-rotor-bar fault detection in squirrel-cage induction motors
نویسندگان
چکیده
In this paper, we propose an off-the-grid compressive sensing based method to detect brokenbar fault in squirrel-cage induction motors. To validate our method, we first build a dynamic model of squirrel-cage induction motor using multi-loop equivalent circuit to simulate motor current under fault conditions. We then develop an off-the-grid compressive sensing algorithm to extract the fault characteristic frequency from the simulated motor current by solving an atomic norm minimization problem. Comparing to other fault detection methods via motor current signature analysis, our method yields high resolution in extracting low-magnitude fault characteristic frequency with only 0.7 second measurements. Simulation results validate our proposed method. 2015 IFAC Symposium on Fault Detection, Supervision and Safety for Technical Processes (SAFEPROCESS) This work may not be copied or reproduced in whole or in part for any commercial purpose. Permission to copy in whole or in part without payment of fee is granted for nonprofit educational and research purposes provided that all such whole or partial copies include the following: a notice that such copying is by permission of Mitsubishi Electric Research Laboratories, Inc.; an acknowledgment of the authors and individual contributions to the work; and all applicable portions of the copyright notice. Copying, reproduction, or republishing for any other purpose shall require a license with payment of fee to Mitsubishi Electric Research Laboratories, Inc. All rights reserved. Copyright c © Mitsubishi Electric Research Laboratories, Inc., 2015 201 Broadway, Cambridge, Massachusetts 02139 Off-the-Grid Compressive Sensing for Broken-Rotor-Bar Fault Detection in Squirrel-Cage Induction Motors Dehong Liu ∗ Dingguo Lu ∗∗,1 ∗Mitsubishi Electric Research Laboratories, Cambridge, MA 02139 USA (e-mail: [email protected]) ∗∗University of Nebraska-Lincoln, Lincoln, NE 68588, USA (email: [email protected]) Abstract: In this paper, we propose an off-the-grid compressive sensing based method to detect broken-bar fault in squirrel-cage induction motors. To validate our method, we first build a dynamic model of squirrel-cage induction motor using multi-loop equivalent circuit to simulate motor current under fault conditions. We then develop an off-the-grid compressive sensing algorithm to extract the fault characteristic frequency from the simulated motor current by solving an atomic norm minimization problem. Comparing to other fault detection methods via motor current signature analysis, our method yields high resolution in extracting low-magnitude fault characteristic frequency with only 0.7 second measurements. Simulation results validate our proposed method. In this paper, we propose an off-the-grid compressive sensing based method to detect broken-bar fault in squirrel-cage induction motors. To validate our method, we first build a dynamic model of squirrel-cage induction motor using multi-loop equivalent circuit to simulate motor current under fault conditions. We then develop an off-the-grid compressive sensing algorithm to extract the fault characteristic frequency from the simulated motor current by solving an atomic norm minimization problem. Comparing to other fault detection methods via motor current signature analysis, our method yields high resolution in extracting low-magnitude fault characteristic frequency with only 0.7 second measurements. Simulation results validate our proposed method.
منابع مشابه
Exact Modeling and Simulation of Saturated Induction Motors with Broken Rotor Bars Fault using Winding Function Approach
Winding function method (WFM) provides a detailed and rather simple analytical modeling and simulation technique for analyzing performance of faulty squirrel-cage induction motors (SCIMs). Such analysis is mainly applicable for designing on-line fault diagnosis techniques. In this paper, WFM is extended to include variable degree of magnetic saturation by applying an appropriate air gap functio...
متن کاملBroken rotor bar fault detection in inverter-fed squirrel cage induction motors using stator current analysis and fuzzy logic
This paper presents the implementation of broken rotor bar fault detection in an inverter-fed induction motor using motor current signal analysis (MCSA) and prognosis with fuzzy logic. Recently, inverter-fed induction motors have become very popular because of their adjustable speed drive. They have been used in many vital control applications such as rolling mills, variable speed compressors, ...
متن کاملMagnetic Saturation Impacts on Fault Analysis of Squirrel-cage Six Phases Induction Motors using Winding Function Approach
Multiple coupled circuit modeling (MCCM) of squirrel-cage induction motors (SCIMs), or winding function approach is the most detailed and complete analytical model used to analyze the performance of faulty SCIMs. Already, in variate papers this approach was used to 3phases SCIMs, but this paper extends the above-mentioned model to 6phases SCIMs. Various simulations of variative faults are carri...
متن کاملNeural-Network-Aided On-line Diagnosis of Broken Bars inInduction Motors
This paper presents a method based on neural networks to detect broken rotor bars and end rings in squirrel cage induction motors. In the first part, detection methods are reviewed and traditional methods of fault detection as well as dynamic model of induction motors are introduced using the winding function method. In this method, all stator and rotor bars are considered independently in ord...
متن کاملNeural-Network-Aided On-line Diagnosis of Broken Bars inInduction Motors
This paper presents a method based on neural networks to detect broken rotor bars and end rings in squirrel cage induction motors. In the first part, detection methods are reviewed and traditional methods of fault detection as well as dynamic
model of induction motors are introduced using the winding function method. In this method, all stator and rotor bars are considered independently in o...
متن کامل